- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000200000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cheang, U K (2)
-
Duygu, Yasin C (2)
-
Kararsiz, G (2)
-
Kim, Min Jun (2)
-
Leshansky, Alexander M (2)
-
Liu, A (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Duygu, Yasin C; Kararsiz, G; Liu, A; Cheang, U K; Leshansky, Alexander M; Kim, Min Jun (, Korea Robotics Society)Planar magnetic microswimmers are well-suited for in vivo biomedical applications due to their cost-effective mass production through standard photolithography techniques. The precise control of their motion in diverse environments is a critical aspect of their application. This study demonstrates the control of these swimmers individually and as a swarm, exploring navigation through channels and showcasing their functional capabilities for future biomedical settings. We also introduce the capability of microswimmers for surface motion, complementing their traditional fluid-based propulsion and extending their functionality. Our research reveals that microswimmers with varying magnetization directions exhibit unique trajectory patterns, enabling complex swarm tasks. This study further delves into the behavior of these microswimmers in intricate environments, assessing their adaptability and potential for advanced applications. The findings suggest that these microswimmers could be pivotal in areas such as targeted drug delivery and precision medical procedures, marking significant progress in the biomedical and micro-robotic fields and offering new insights into their control and behavior in diverse environments.more » « less
An official website of the United States government

Full Text Available